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In this article, we describe a numerical many-body approach for the description of the electromagnetic
response of discrete one-dimensional electronic nanosystems. This approach is based on a recursive method to
construct a subset of relevant Slater determinants as a many-body basis for the considered system. In turn, we
employ a generalized Floquet theory to calculate the periodic many-body statistical operator for the system
which is subject to a periodic time-dependent Hamiltonian. As an application of this method, we propose a THz
probe technique to obtain spatially resolved information about the electronic spectra inside gated nanowires.
This spectroscopic approach employs a segmented multigate design for the local detection of quantum transi-
tions between few-electron states. The obtained simulation results for the intraband THz response spectrum
show fingerprints for the formation of Wigner molecules inside the nanowire in the long channel limit.
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I. INTRODUCTION

The electronic properties of ultimately scaled nanostruc-
tures are dominated by only a handful of electrons or holes.
In such nanodevices, one has to face two nonclassical physi-
cal mechanisms.1,2 First, due to the spatial confinement of
charge carriers, quantization energies of electronic states be-
come relevant, leading to a nonclassical transport behavior.
Second, the details of the Coulomb interaction between the
individual carriers become important and can no longer be
described in terms of a mean-field picture. As a prototype
system, one-dimensional nanowire-based structures3–5 have
recently attracted great interest due to their advantageous
electrostatics and transport properties.6–8 From a different
perspective, they also represent model systems for the study
of technological as well as physical challenges in future
nanodevice designs.

In order to capture the numerous details of a realistic
nanostructure, such as the actual geometrical configuration
of the gate electrodes, a realistic quantum simulation of such
a system requires the consideration of a sufficiently large
number Z�50–500 of single-particle states.9,10 Normally,
due to the lack of symmetries, such systems are inhomoge-
neous and anisotropic and furthermore may exhibit a long-
range interaction. Since the resulting many-body problem
scales exponentially in Z, a full diagonalization thus grows
beyond any computational limit. As an option, one could
take the path to consider a highly idealized model �analogous
to the Anderson or Hubbard models11,12� mapping the actual
nanosystem to a reduced �albeit nontrivial� model system
with a small number of effective parameters. Such an ap-
proach can be justified in the sense that typically only a small
number of degrees of freedom are relevant for the investi-
gated fundamental effects. Nevertheless, these relevant de-
grees of freedom and their associated effective parameters in

general are nonlinear functions of the actual experimentally
accessible parameters �such as gate voltages� and not known
a priori. In order to address this problem, we have recently
introduced a multiconfigurational approach8,13,14 �MCSCG�
which employs a reduced adaptive basis for the simulation of
stationary Coulomb blockade effects in gated nanowire
structures.

For the realistic simulation of nonlinear and nonadiabatic
real-time response phenomena in such finite �or quasi-
isolated� many-body nanosystems, a large number of excited
many-body eigenstates has to be considered. Here, many-
body approaches that focus on ground-state or equilibrium
properties of the system, such as density functional
theory15–17 �DFT� or the quantum Monte Carlo18–20 �QMC�
method are not suitable. For the considered problem, the
configuration interaction �CI� method21–28 is the most flex-
ible approach, based on an expansion of the many-body
eigenstates in terms of simple many-body basis functions
such as Slater determinants. However, due to the exponen-
tially growing number of states, standard CI implementations
are typically restricted to a small number of single-particle
basis states or limited excitation degrees �e.g., single-double
�SD-� CI and multireference-double-excitation �MRD-�
CI�.23,25,26,29 As a generalization, the Monte Carlo CI �MCCI�
has been introduced in Refs. 30 and 31, using an iterative
optimization procedure by repeated Monte Carlo based con-
figuration generation, diagonalization, and selection of the
most important configurations. However, if a large number of
excited many-body eigenstates has to be computed as in our
problem, the MCCI might not be computationally efficient
enough due to the need for a repeated diagonalization.

In order to address these issues of a realistic many-body
simulation, in this paper we therefore introduce a recursive
scheme which is able to generate a priori a large number of
configurations �Slater determinants, typically 103–106� with-
out the need for a costly diagonalization within the selection
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process. The algorithm consists of two steps: �i� recursive
construction of a large set of relevant Slater determinants
�“bucket-brigade algorithm”� and �ii� many-body diagonal-
ization within the resulting Fock subspace. Such an approach
enables us to describe correlated many-body states beyond
mean-field theory which become essential within the field of
quantum information technology.

In the following sections, we first describe the main
physical ideas behind our many-body simulation approach.
Subsequently, we demonstrate the strengths of the concept
by considering a realistic example of a gated nanowire de-
vice. From the simulated THz intraband response of this sys-
tem, we observe indications of the formation of a Wigner
molecule in the long channel limit, yielding significant de-
viations from the single-particle picture.

II. RELEVANT MANY-BODY SUBSPACE

For an arbitrarily given single-particle orthonormal �ON�
basis B= �� j� the exact many-body Hamiltonian of the finite
�i.e., discrete� system in second quantization reads as

H0 = �
j,k

� jkcj
†ck +

1

2 �
j,k,l,m

Vjklmcj
†ck

†clcm, �1�

where � jk and Vjklm denote single-particle and Coulomb two-
particle matrix elements of the total system Hamiltonian and
cj is the annihilation operator for the single-particle state j.

For a numerical diagonalization of this many-body
Hamiltonian, we employ Slater determinants as simple
many-body basis states, constructed from the single-particle
basis B. Obviously, for numerical reasons, one has to select a
finite subset of relevant Slater determinants from the infi-
nitely large set of all basis states. In the following, we
describe a recursive algorithm for the deterministic genera-
tion of such a relevant subset which goes beyond the com-
monly employed truncation scheme based on nth-order
excitation.25,26

A. Bucket-brigade algorithm: Recursive construction
of relevant Slater determinants

Let Nmax be the maximum number of single-particle states
that shall be considered. Hence, we consider a subspace
spanned by BNmax

= �� j	j=0, . . . ,Nmax−1�. The recursion pro-
cedure can be formulated in terms of a sequence of sets SJ,N
of Slater determinants. Here, J=0, . . . ,Nmax denotes the re-
cursion step number and N=0, . . . ,Nmax is the particle num-
ber. Each SJ,N can be interpreted as a “bucket,” containing
relevant Slater determinants of N particles in single-particle
states j=0, . . . ,J−1. Within each recursion step J→J+1, we
first expand the old sets SJ,N by adding states of SJ,N−1 with
an extra particle created in the single-particle state j=J. After
this expansion, the buckets are truncated again by selecting
only the most suitable Slater determinants. For this purpose,
we employ a suitable “measure of importance” � for the
selection of Slater determinants within each bucket. The de-
scribed procedure is visualized in Fig. 1. In the Appendix, all
technical aspects of the formal recursion,

1. Start: Empty buckets �except for the bucket containing
the vacuum state�

2. Recursion step J→J+1: Add single-particle state J to
existing Slater determinants and select the most relevant
ones by use of �

and the choice of �, are discussed in detail.
The main benefit of this “bucket-brigade CI” �BBCI� re-

cursion stems from a significant reduction of the number of
Slater determinants DN�Dmax�N� that have to be considered
numerically. Here,

Dmax�N� = 
Nmax

N
� �2�

denotes the maximum number of Slater determinants for N
particles. In turn, the obtained “relevant” subset of Slater
determinants is employed as a many-body basis for a subse-
quent diagonalization of the many-body Hamiltonian within
the relevant subspace. Finally, with the help of the resulting
relevant eigenvectors and associated eigenvalues of the
many-body Hamiltonian one can calculate the time evolution
of the isolated system and can construct stationary statistical
operators for the calculation of expectation values.

B. Approximations and applicability

By considering only those Slater determinants that are
chosen as “relevant” by the described algorithm, two con-
trolled approximations are made: First, the number of con-
sidered single-particle states Nmax is finite. Equivalently, the
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FIG. 1. Visualization of the recursion step J→J+1: for a con-
sidered bucket N copy all existing states, add new states by apply-
ing cJ

† to all existing states from the previous bucket �N−1� and
truncate with the help of the measure �. A small circle or rhombus
represents a single-particle state, and N denotes the particle number
in the bucket. �The shown truncation is an artificial example.�
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recursion step is performed only a finite number of times
Nmax. Second, the maximum number DN of Slater determi-
nants in each set SJ,N can be smaller than Dmax�N�. In the
limit Nmax→� and DN→�, the algorithm becomes exact.

The described algorithm typically becomes advantageous
if the required maximum number of single-particle states
Nmax and the number of particles N provide a maximum
number Dmax�N� of Slater determinants that lies beyond the
limit for which the resulting problem can be fully diagonal-
ized �full CI�, in particular for realistic nanoelectronic sys-
tems which are strongly inhomogeneous and anisotropic with
minimal symmetries. Consequently, the single- and two-
particle matrix elements of the Hamiltonian have to be con-
sidered as arbitrarily given quantities, lacking the symme-
tries of idealized impurity and lattice models for which
renormalization group �RG� approaches32,33 would become
advantageous. For the considered nanosystem, typical
application-relevant values are Nmax=32–256, N=0–32, and
DN=103–106. For such a problem, RG-based approaches
might become impractical since the storage requirements of
matrices for the given Nmax and DN grow beyond realistic
limits.

In principle, the described recursive algorithm is suitable
to provide a basis for many-body states up to any energy
scale since all single-particle states are scanned systemati-
cally. It can be used in particular for nanoelectronic many-
body problems where a single set of Slater determinants has
to be determined which is relevant for a whole energy inter-
val of many-body eigenstates �not only the ground state or a
particular excited state�. As a major advantage, the BBCI
approach is able to calculate a large set of excited many-
body states, which are mandatory for the simulation of non-
linear real-time response properties. In principle, a full-CI
approach would also provide such information, however, at
the cost of an exponentially increased number of many-body
basis states. For example, a number Nmax=64 single-particle
states for N=4 electrons would imply a total number of
Dmax�N�=635 376 Slater determinants, whereas the BBCI
typically selects only a few 1000 final relevant Slater deter-
minants �see example in Sec. IV�. Consequently, a significant
reduction of total computational time for the subsequent nu-
merical diagonalization is obtained. From a different per-
spective, the BBCI algorithm constitutes a generalization of
the SD-CI and MRD-CI techniques by use of a selection
measure �. In order to demonstrate the strengths of the BBCI
quantitatively, a numerical comparison of the BBCI with a
conventional CI-based approach for the case of a gated nano-
wire system will be provided in Sec. IV C.

In general, CI-based approaches become beneficial for
systems with a relatively small number of single-particle ba-
sis states which are involved in correlation �or subject to
occupation fluctuations�. Here, zero- and one-dimensional
�0D and 1D� nanoelectronic systems represent suitable
application-relevant candidates, as discussed in this paper.

By construction, the BBCI generates N-particle many-
body basis states by recursively expanding those of N−1
particles. Such an approach assumes that those interaction
effects that are relevant for N−1 particles are also important
for the N-particle system. In order to address this point, the
measure � in principle can be constructed such that the

“missing” electron in N−1 can be included in terms of an a
posteriori mean-field contribution in �. Furthermore, it is
important to keep track of a large number �typically
104–107� of states within the intermediate buckets to prevent
from removal of states which eventually might become im-
portant for the final bucket. Such a constraint, however, can
be easily fulfilled numerically since the BBCI recursion
scheme does not require any intermediate diagonalization
steps but solely the storage and manipulation of a corre-
sponding number of integers �such as the bitmap representa-
tions of Slater determinants�. Since the BBCI algorithm gen-
erates states with particle numbers up to a given Nmax, the
latter states can be employed as a basis for grand canonical
as well as canonical calculations.

In conclusion, the BBCI technique offers the advantage of
a significantly reduced set of many-body basis states in com-
bination with the ability to calculate a large set of excited
many-body eigenstates. In turn, expectation values of arbi-
trary subspace observables with respect to any given statis-
tical operator can be calculated numerically �not necessarily
restricted to the ground state or equilibrium�. A typical ex-
ample of a realistic nanosystem where these advantages can
be exploited will be discussed in Sec. IV, considering the
THz response of a gated 1D nanowire system. The full po-
tential of the BBCI remains to be explored yet.

III. PERIODIC STATISTICAL OPERATOR

The Hamiltonian H�t� of the system is assumed to be
periodic

H�t + T� = H�t� . �3�

Hence, we can write

H�t� = �
m=−�

+�

e−im�tHm, �4�

with “Fourier coefficient” operators Hm and ��2� /T.34,35

Note that the oscillatory terms Hm�0 are not necessarily
small perturbations of H0. In the following, we consider the
general case, not assuming any particular form of Hm�0.

The many-body statistical operator � of the system obeys
a generalized Liouville equation

���t�
�t

= −
i

	
�H�t�,��t�� −

�

	
���t� − �̃� , �5�

where �̃ is a given statistical operator �such as thermody-
namical equilibrium for H0 or electronically driven nonequi-
librium� with an empirical relaxation constant �→0+. In the
following, we are interested in periodic solutions of this
equation of motion, corresponding to a “stationary” limit
cycle of the system. Hence, we can write

��t� = �
m=−�

+�

e−im�t�m �6�

with “Fourier coefficient” operators �m. Employing the equa-
tion of motion, we thus obtain
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m	��m − �
m�=−�

+�

�Hm−m�,�m�� = i��
m,0�̃ − �m� �7�

which is equivalent to Floquet theory29,34,35 in Liouville
space if ��0.

A. Projection operator

In order to formulate the exact solution for the operator
set ��m� in a compact form, we make use of a “Floquet su-
peroperator” notation: Choosing an arbitrary but fixed ON
basis of the considered Fock space, we can rewrite Eq. �7� in
this representation as

m	��m,j,k − �
m�,j�

H�m−m��,j,j��m�,j�,k + �
m�,k�

�m�,j,k�H�m−m��,k�,k

= i��
m,0�̃ j,k − �m,j,k� , �8�

where j , j� ,k ,k� denote Fock space basis state indices. Em-
ploying multi-indices J= �m , j ,k�, J�= �m� , j� ,k�� we finally
get

�
J�

LJ,J�vJ� + i�vJ = i�ṽJ, �9�

with the “Floquet supermatrix”

LJ,J� = m	�
m,m�
 j,j�
k,k� − H�m−m��,j,j�
k,k� + 
 j,j�H�m−m��,k�,k,

�10�

and “Floquet supervectors” which are defined via

vJ = �m,j,k and ṽJ = 
m,0�̃ j,k, �11�

providing a one-to-one correspondence between Floquet su-
pervectors v and operator sets ��m�. In a more compact form,
this can be written as

Lv + i�v = i�ṽ . �12�

Since H�t� is Hermitian, the Floquet supermatrix L becomes
Hermitian as well. Hence, L exhibits real eigenvalues only
and L+ i� is a regular matrix. In turn, the equation for the
Floquet super-vector v can be solved uniquely:

v =
i�

L + i�
ṽ . �13�

As can be readily shown, in the limit �→0+, we get

lim
�→0+

i�

L + i�
= P0, �14�

where P0 is the projection operator �in Floquet superspace�
to the eigenspace of L for eigenvalue 0. Hence, in this limit,
we get

v = P0ṽ �� → 0+� . �15�

One has to note that L depends on �. Therefore, P0 becomes
� dependent as well. Furthermore, P0 involves all orders in
�Hm�, which makes this approach nonperturbative. In con-
trast to the case ��0 which yields no unique solution v in

general, the upper expression provides a unique solution, de-
rived in a continuous manner from the initial preparation
ṽ��̃�. As can be shown, the resulting ��t� is

�i� T periodic,

�ii� Hermitian,

�iii� positive semidefinite �i.e., all eigenvalues �0�,
�iv� and obeys Tr���t��=1,

provided that �̃ is a valid statistical operator. Note that, in
general, we obtain �m�
m,0�̃ �except for trivial cases such as
�Hm ,Hm��=0 with �Hm , �̃�=0�.

For practical reasons, the maximum harmonic index m
must be truncated at some sufficiently large number mmax.
One has to note that such a truncation in harmonic index m
up to mmax differs significantly from Kubo perturbation
theory36,37 up to mmax-th order in h�H−H0. �i� The projec-
tion operator approach in principle accounts for all orders in
h that contribute to a given harmonic index m, albeit involv-
ing the approximation of a finite mmax. �ii� In contrast, per-
turbation theory considers only a given finite order in h, and
thus neglects all possible contributions of higher orders in h
to a given harmonic m. As such, the projection operator pro-
vides a nonperturbative approach to the time-dependent
problem H�t�, beyond standard Kubo theory.

For a numerical implementation, we assume that the
eigenstates and eigenenergies of H0 are known within a suf-
ficiently large relevant subspace, calculated via the bucket-
brigade algorithm as described in the previous section. In
turn, all operators are written as matrices with respect to this
eigenbasis within the relevant subspace of dimension nmax
�DN0

. Within the studied realistic examples, it is sufficient
to employ nmax�100 many-body basis states �of DN0
�103–104� with up to mmax�10 harmonics. Since

�−m = �m
† , H−m = Hm

† , �16�

it is sufficient to keep track of matrices with m�0. Conse-
quently, we have to deal with Floquet supervectors v with
d= �mmax+1�nmax

2 �105 complex elements, yielding Floquet
supermatrices of the size dd. �Note that conventional
Liouville supermatrices have the size d�d� with d�=nmax

2 .�
Here, a significant reduction of computational requirements
arises for the application-relevant case of a monochromatic
perturbation, where Hm�0 only for m=0, �1, which pro-
vides sparse matrices L.

B. Density-matrix recursion

For small perturbation strengths, a computationally more
efficient technique can be formulated: With the notation
�A , ·��mª �A ,�m�, we can rewrite Eq. �7� as

�m	� − �H0, ·� + i���m = �
m��m

�Hm−m�,�m�� + i�
m,0�̃ .

�17�

With the unperturbed resolvent Liouville superoperator

Rm = �m	� − �H0, ·� + i��−1 �18�

we therefore obtain the “density-matrix recursion” formula
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�m
�M+1� = �1 − ���m

�M� + �Rm
 �
m��m

�Hm−m�,�m�
�M�� + i�
m,0�̃�

�19�

for step M→M +1, where � is a numerical damping param-
eter. As the “initial condition” for this recursion at step M
=0 we choose �̃:

�m
�0� = 
m,0�̃ . �20�

This choice ensures a unique preparation of the system, be-
ing physically related to the preparation �̃. Provided that this
recursion schemes converges, its solution obviously fulfills
the equation of motion. As a special case, a finite number of
recursion steps with �=1 stands in direct correspondence to
time dependent perturbation theory.36,37

Within a numerical implementation, this recursion tech-
nique becomes advantageous in the eigenbasis of the unper-
turbed Hamiltonian H0 since Rm becomes diagonal as well.
As for the domain of convergence, the density-matrix recur-
sion proves useful for small perturbation strengths, providing
identical results as compared to the projection operator tech-
nique.

C. Expectation values and correlation functions

Finally, we can calculate the time dependent expectation
value for an arbitrarily given observable A as

A��t� � Tr�A��t�� = �
m

e−im�tAm �21�

with Fourier coefficients Am=Tr�A�m�. Note that due to the T
periodicity of ��t�, any expectation value A��t� becomes T
periodic as well and hence exhibits a purely harmonic spec-
trum with fundamental frequency � of the perturbation h�t�
ªH�t�−H0. For example, the knowledge of d��t� with the
dipole operator d can be used for the calculation of stimu-
lated �coherent� dipole emission with h representing a peri-
odic pump input signal.

In order to compute the N-point �N�2� correlation func-
tions of operators An, we need to evaluate expectation values
of the form

A1�t1� ¯ AN�tN�� � Tr�A1�t1� ¯ AN�tN��� , �22�

where An�tn� are Heisenberg operators and ����t=0� is the
statistical operator of the system. For example, an expression
of the form d+�t1�d−�t2�� is required for the calculation of
the emission spectrum �coherent plus incoherent� according
to a generalized Wiener-Khintchine theorem.38 We have
A�t�=U†�t�AU�t� with the propagator U�t�. Note that in con-
trast to ��t+T�=��t�, we have A�t+T��A�t� in general. For
N�2, the knowledge of ��t� is not sufficient and we need to
know the explicit form of U�t� as well. At least for �, we can
employ the result

� � ��0� = �
m

�m. �23�

As for the numerical calculation of

U�t � 0� � T exp
−
i

	
�

0

t

dt�H�t��� �24�

we can employ the periodicity of H�t� and obtain

U�t + T� = U�t�U�T� . �25�

Therefore, it is sufficient to integrate and store U�t� for 0
� t�T numerically �for a sufficiently small time step �t
�1 /�max� and employ U�T� for the continuation to all times.

In summary, we have all the ingredients to calculate ex-
pectation values numerically for the given H�t� with the help
of the projection superoperator. Only correlation functions
require the explicit evaluation of U�t� for 0� t�T.

IV. EXAMPLE: WIGNER MOLECULES
IN GATED NANOWIRES

As an application of our method, we now consider the
THz intraband response spectrum of a realistic gated nano-
wire system. Figure 2 shows a schematic sketch of the con-
sidered nanowire with multiple gate segments which serve
as electrostatic probes on a nanoscale. In contrast to
microwave-assisted tunneling39,40 which is based on trans-
port measurements, in our example we consider a quasi-
isolated system where oscillating image charges within the
gate electrodes serve as a means to detect the motion of the
confined electrons caused by the external THz field. We as-
sume that only one lateral subband needs to be taken into
account, corresponding to channel diameters in the sub-
30-nm range for GaAs. The following simulation results are
based on the BBCI algorithm in combination with first-order
density-matrix recursion �i.e., �=1 and M =0 in Eq. �19�� for
the description of the THz response spectra within the cho-
sen relevant many-body basis.42 As for the numerical param-
eters of the following example, we have employed 400 tight-
binding sites for the description of the nanowire channel. In
turn, the BBCI algorithm was applied to the lowest 64
single-particle eigenstates of the single-particle Hamiltonian
�including the spin degree of freedom�, ordered by single-
particle energy.

FIG. 2. Schematic view of an idealized nanowire in multigate
configuration �“caterpillar-field-effect transistor”�. This example
shows a system with five coaxial gates. Here, gates 1 and 5 are
negatively biased and thus provide barriers. Gates 2, 3, and 4 cover
a channel region of length L and act as probes. In the simulations,
the intergate gaps are assumed to be negligible. The outer source
and drain contacts are not shown here.
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As for the numerical implementation, the selection
measure � as given in Eq. �A2� was employed. Finally, the
number of relevant Slater determinants, which served as
many-body basis states for the subsequent numerical diago-
nalization, was chosen to be 3072 in the final bucket �and up
to 262144 states in the intermediate buckets�.

For the following idealized example, the nanowire chan-
nel is covered by multiple separated gate electrodes as de-
picted in Fig. 2. Experimentally, such a structure could be
realized by use of 1D semiconductor whiskers,3 conformally
coated by the gate dielectric and metallic gate electrodes
which are structured by means of electron-beam lithography.
Applying a sufficiently large negative voltage to the outer-
most gates �for example, gates 1 and 5 in Fig. 2�, barriers
arise and we thus can assume an almost isolated channel
system. A monochromatic input THz excitation is applied to
gate 1, whereas the intermediate gate fingers �gates 2, 3, and
4 in Fig. 2� serve as spatially resolved probes. In the consid-
ered example, the outermost gates are biased to −2 V and all
the intermediate gates to 0 V.

In order to illustrate the main effect, we consider two
different nanowire field effect transistors with a GaAs chan-
nel and SiO2 gate insulation. In both cases we keep the chan-
nel diameter d=20 nm and the oxide thickness dox=10 nm
constant, whereas the channel lengths are chosen as L=150
and 600 nm with corresponding total oxide capacitances of
Cox=47 aF and Cox=188 aF, respectively. In the following
example, 40+2 gate segments will be considered. Due to the
coaxial gate electrodes, the Coulomb interaction within the
channel region is strongly screened. In the considered ex-
ample, we obtain a screening length8,43 of �=10.5 nm for
�ox=3.9 and �ch=12.4. In the following discussion, we as-
sume a thermodynamical equilibrium state in the low tem-
perature limit in order to obtain a well-resolved occupation
of quantum states. The total electron number is kept fixed at
N=4, trapped within the inner channel region L. As for a
possible experimental preparation of such an electronic state,
one could employ the outer source and drain contacts �not
shown in Fig. 2� in combination with suitable barrier-gate
voltages to make use of single-electron tunneling for electron
counting.44

A. Charge density

Figure 3 shows the simulated charge density along the
channel axis for the nanowire with L=150 nm. For compari-
son, the noninteracting case is shown in Fig. 3�a�, whereas
the realistic case which includes the Coulomb repulsion is
plotted in Fig. 3�b�. For this case, the single-particle quanti-
zation energy dominates as compared to the Coulomb repul-
sion, resulting in a charge distribution which resembles the
shape of a noninteracting system. Here, the Coulomb repul-
sion solely broadens the spatial electron distribution. In con-
trast, for the L=600 nm case �Fig. 4�a� and 4�b�� one can
clearly identify the formation of a charge-density wave, in-
dicating the onset of the Wigner molecule regime45 with
separated electrons owing to the dominating Coulomb repul-
sion. Comparing the artificial noninteracting case Fig. 4�a�
with Fig. 4�b�, one can clearly observe the qualitative change

in the electron-density profile, demonstrating the role of the
Coulomb interaction in this case. The actual transition to the
Wigner regime for a nanowire structure in general results
from a competition between kinetic energy and Coulomb en-
ergy, which of course depends on the chosen materials and
geometries. In the long-channel case �L=600 nm�, the mean
spatial separation of the electrons �x�L /N becomes much
larger than the screening length � of the Coulomb interaction
within the channel. For the discussed example, in turn, it is
energetically favorable for the electrons to form a charge-
density wave in order to reduce the Coulomb energy, out-
weighing the increased kinetic energy due to the spatial con-
finement �x.

For a realistic nanodevice simulation in general, it is cru-
cial to take the spin degree of freedom into account, even in
the absence of an external magnetic field. �See, for example,
Ref. 41. Here, charge-density waves have been observed as
well.� In fact, within the BBCI scheme, the electronic spin is
naturally included in terms of the chosen single-particle basis
and associated matrix elements. One has to note that for our
nanowire system without external magnetic field, we do not
observe any broken spin symmetry since the BBCI many-
body eigenstates correctly resemble the symmetry of the
underlying Hamiltonian. In contrast, a single-Slater-
determinant mean-field approximation might yield broken
symmetries even in the absence of an external field.
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FIG. 3. Simulated electron charge density for a GaAs nanowire
FET with L=150 nm and d=20 nm. The number of electrons is
N=4. �a� shows the noninteracting case, whereas �b� includes the
electron-electron interaction. Comparing the two cases, no signifi-
cant qualitative change can be observed.
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B. Spatially resolved THz response

In order to probe such a peculiar electronic configuration
within a nanowire channel, we now consider the spatially
resolved THz response spectrum of such a device. In the
following simulation results, we have employed a resolution
of 40 intermediate probe gates. Here, the physical observable
that we consider for the output signal is nothing but the
induced image charge within the individual gate electrodes.
One has to note that each gate finger detects a spatially av-
eraged signal within an effective interval lG

eff� lG+2�, where
lG denotes the geometrical length of the gate segment and �
the gate screening length.8 Parasitic stray capacitances which
will likely occur in an experimental realization of such a
device are not considered in this paper. For the experimental
case it might be advantageous to employ alternating screen-
ing and signal gates, combined with an optimized THz layout
and a suitable preamplification setup for the detection of the
image charge signal.46

Figures 5 and 6 show the simulated first-order THz spec-
tra for the two cases L=150 and 600 nm, respectively, which
exhibit fundamental resonances at 1.69 THz and 70 GHz.
The higher value for the 150 nm case stems from a narrower
electron distribution �see Fig. 3�b��. Most noticeably, com-
paring the qualitative form of the two spectra, signatures of

the Wigner-like regime for the 600 nm case �Fig. 6� can be
identified via the appearance of additional spatial peaks
which are related to the oscillatory nature of the charge-
density wave. One has to note that the maxima in these tran-
sition spectra are located at those gate positions where the
charge oscillates the most, and thus need not coincide with
the charge-density maxima. In fact, for a noninteracting case,
the spatial THz pattern is related to the gate-averaged prod-
uct of the two wave functions of the involved final and des-
tination states. Even with the inclusion of the electron-
electron interaction, the considered L=150 nm device comes
close to such a situation. In the case of a correlated many-
body state, however, such an interpretation is not applicable
in general and a many-body approach such as the BBCI be-
comes mandatory. In any case, the obtained THz spectra can
be considered as “fingerprints” of the concrete electronic
configuration of the channel, providing not only information
about electronic transition energies but also about the spatial
configuration of the underlying few-electron states.
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FIG. 4. Simulated electron charge density for a GaAs nanowire
FET with L=600 nm and d=20 nm. The number of electrons is
N=4. �a� shows the noninteracting case, whereas �b� includes the
electron-electron interaction. The charge-density wave in �b� indi-
cates the formation of a Wigner molecule within the long-channel
device. Here, the electron density differs qualitatively from the non-
interacting case �a�.
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FIG. 5. Top view of the nanowire structure �40+2 gates� and the
simulated first-order THz transition spectrum for a GaAs nanowire
with L=150 nm and d=20 nm. The number of electrons is N=4.
Within the grayscale plot, black corresponds to a strong response
signal. For this device, the main effect of the electron-electron in-
teraction consists mainly in a renormalization of the energy spec-
trum. The lower diagram shows an intensity cross section at the
fundamental frequency indicated by the arrow.
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C. Reference calculation and numerical convergence

In order to verify the convergence of the employed BBCI
algorithm and to give an estimation of the energy error for
the many-body spectrum, in this section we therefore provide
a comparison of the BBCI results with a conventional full
diagonalization �full CI� for a varying number of Fock-
subspace basis states. Figure 7 visualizes the simulation re-
sults for the lowest many-body eigenenergies of the nano-
wire system for two channel lengths L=150 nm and 600 nm.
In both cases, N=4 electrons have been considered. The
number of single-particle basis states is Nmax=28, resulting
in a total number of Dmax�4�=20 475 Slater determinants for
the full-CI calculation. Here, the relative error

�n =
En

BBCI − En
FCI

En
FCI �26�

is plotted as a function of the many-body eigenstate index n.
EBBCI and EFCI denote the eigenenergies obtained from the
BBCI and full-CI calculations, respectively. Two Fock-
subspace dimensions have been employed within the bucket-
brigade selection scheme for the BBCI: D4=3072 and 8192.
As can be seen, for the case of a short channel L=150 nm,
the maximum error of the BBCI spectrum remains well be-
low 0.02%, even for 3072 BBCI Slater determinants only �as
compared to 20 475 for full CI�. Considering the second case
of the longer channel L=600 nm, one can clearly observe an
increased energy error, which is due to the dominating Cou-
lomb interaction in the Wigner regime. Nevertheless, for
8192 BBCI Slater determinants, the maximum error remains
still below 1% for the first 20 excited many-body states.
Obviously, a full-CI approach is numerically very time con-
suming or even impractical for some cases �such as Nmax
=64 single-particle states as employed in the previous sec-
tions�. Here, the strength of the BBCI approach lies in a
significantly reduced Fock-space dimension, requiring only a
fraction of Slater determinants while providing results of a
controllable accuracy. If we were solely interested in ground-
state properties, computationally much more efficient meth-
ods exist, however, lacking excited many-body states which
are provided by BBCI in a controlled manner.

The convergence of the BBCI selection process has also
been tested by use of full-CI reference calculations. Figure 8
shows the calculated relative energy error as a function of the
employed Fock-subspace dimension D4. Apart from the
ground state �n=0�, two representative many-body eigen-
states �n=9,19� are plotted as well. As can be clearly seen,
the BBCI scheme converges for an increasing number of
Slater determinants, finally approaching the full-CI result.
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FIG. 6. Top view of the nanowire structure �40+2 gates� and the
simulated first-order THz transition spectrum for a GaAs nanowire
with L=600 nm and d=20 nm. The number of electrons is N=4.
Within the grayscale plot, black corresponds to a strong response
signal. The lower diagram shows an intensity cross section at the
fundamental frequency indicated by the arrow. As compared to the
short-channel case in Fig. 5, the formation of a Wigner molecule
leads to additional spatial peaks.
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FIG. 7. Relative deviations of BBCI many-body eigenenergies
compared to a full-CI reference calculation �Dmax�4�=20 475� as a
function of the many-body eigenstate index n. The example shows
two GaAs nanowire FETs with channel lengths L=150 and
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total number of N=4 electrons have been chosen. As a parameter,
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The BBCI thus yields a controlled approximation, in particu-
lar for the numerical calculation of excited many-body states.

V. SUMMARY

We have discussed a recursive method to construct a sub-
set of relevant Slater determinants for use in many-body di-
agonalization schemes in order to simulate many-body ef-
fects of realistic nanodevices with Coulomb interaction. The
system is assumed to be finite. The described method be-
comes advantageous if a large number of single-particle ba-
sis states is required where full diagonalization schemes be-
come impractical. By use of a recursive method, a reduced
number �typically a few 1000� of relevant many-body basis
states �Slater determinants� is generated, systematically scan-
ning all given single-particle basis states. On this basis, a
nonperturbative numerical approach to the calculation of the
many-body statistical operator for an arbitrary periodic time-
dependent Hamiltonian has been formulated.

As a realistic example, we have considered a THz probe
for a spatially resolved analysis of electronic spectra in
nanowire-based transistors employing a multisegment gate
design. We have simulated the THz response of few-electron
quantum states in gated nanowire structures by use of our
method. The discussed case of a GaAs-based device demon-
strates that signatures of Wigner-like charge-density waves
can be identified by use of this method, which lies beyond
the scope of standard characterization methods based on sta-
tionary transport. As such, the proposed multigate THz probe
technique might prove useful in a future experimental real-
ization as a means to characterize nanoscale devices which
are dominated by quantization and Coulomb effects.

APPENDIX: BUCKET-BRIGADE ALGORITHM

The bucket-brigade algorithm can be defined via the fol-
lowing recursion scheme as visualized in Fig. 1:

1. Start
“Empty buckets except for the vacuum”
For J=0 and N=1, . . . ,Nmax: SJ,N=�.
For J=0, . . . ,Nmax and N=0: SJ,N= �	0��.
2. Recursion step J→J+1 for J=0 , . . . ,Nmax−1
“Add single-particle state J to existing Slater determinants

and select”
For N=1, . . . ,Nmax:

�i� Expansion

Let Ŝ=SJ,N� �cJ
†v	v�SJ,N−1�.

�ii� Truncation

If card�Ŝ��DN, choose SJ+1,N= Ŝ

Else, choose SJ+1,N� Ŝ such that card�SJ+1,N�=DN and

∀ v�SJ+1,N, ∀ w� Ŝ \SJ+1,N: ��v����w�.
Here, 	0� denotes the Fock space vacuum state, card�S� is the
number of Slater determinants in set S, and DN �with N
=0, . . . ,Nmax� are given integers which determine the maxi-
mum number of states in SJ,N �for all J�. Hence, we must

have DN�Dmax�N���
Nmax

N
�. Furthermore, � is a real “mea-

sure of importance” for the selection of Slater determinants.
For a normalized Slater determinant v, we assume a measure
of the form ��v�= v	M	v� with a many-body operator M
�which can be assumed to be diagonal without loss of gen-
erality�. The latter can be expanded in a series of n-particle
product terms

M = �
j1

Mj1
�1�Nj1

+ �
j1�j2

Mj1j2
�2� Nj1

Nj2
+ ¯ , �A1�

with Nj �cj
†cj for single-particle state j and real coefficients

M�n�, which represent conditional n-particle selection
weights. In the simplest case �as in the example discussed in
this paper�, one can choose the diagonal elements of the
Hamiltonian itself, that is,

Mj
�1� = � j j, Mjk

�2� = Vjkkj − Vjkjk, M�n�2� = 0. �A2�

This simple measure corresponds to a selection by energy in
first-order perturbation theory.47 From this construction it is
obvious that the set SJ,N contains only Slater determinants
with a total number of N particles. To some extent, the de-
scribed procedure resembles the NRG recursion scheme,32

however, lacking the costly diagonalization steps at this
stage.

For any desired particle number N0�Nmax, we can now
define a finite Fock subspace

F0 = span�SNmax,N0
� , �A3�

spanned by the many-body basis SNmax,N0
of “relevant” Slater

determinants with dimension
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FIG. 8. Convergence test for the parameters as discussed in Fig.
7. The relative deviation of BBCI energies is plotted as a function
of the Fock-subspace dimension D4 for three representative eigen-
states �n=0,9 ,19�.
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dim�F0� = card�SNmax,N0
� � DN0

. �A4�

By construction, the states within SNmax,N0
for a fixed N0 are

orthonormalized. In turn, a corresponding finite restricted
Hamiltonian within F0 can be diagonalized numerically in a
matrix representation with respect to the basis SNmax,N0

.
Within the BBCI algorithm, two means of �a posteriori�

optimization exist. �i� Choice of the single-particle basis and
in particular its order. �ii� Choice of the selection criterion �
of Slater determinants.

As for �i�, one could solve an effective single-particle
mean-field problem derived from H0 for a given particle
number N0 and the given occupation conditions �e.g.,
Hartree-Fock, LDA-SDFT �Refs. 15–17��. The resulting
single-particle ON eigenbasis of this problem could be cho-
sen for B. Furthermore, one can define an outer self-
consistency loop for the described algorithm. Here, the
many-body state �preparation� of the system is described by
a suitable many-body statistical operator ��H0� which is ex-
pressed in terms of the calculated basis SNmax,N0

and the as-
sociated eigenvalues for a given boundary condition �such as
maximum entropy under given constraints, nonequilibrium

injection via rate equations, or the selection of a certain ex-
cited many-body state�. In turn, the single-particle eigen-
states of the resulting �transposed� single-particle density
matrix �̂, which can be calculated via

�̂kj = Tr��cj
†ck� , �A5�

are used as a new single-particle basis Bnew for a repeated
many-body diagonalization, employing SNmax,N0

�Bnew�. Such
an approach resembles the MCSCF formalism23 �where these
single-particle states are referred to as “natural orbitals”�.
The latter method typically aims at the calculation of one
particular many-body state �e.g., the ground state�. In any
case, the correct choice of the single-particle basis is essen-
tial for any finite expansion of many-body states in Slater
determinants to be efficient.48

As for �ii�, the measure � can also be chosen adaptively
from the many-body diagonalization. Here, the coefficients
M�n� might be constructed from the probability weights of
conditional n-particle projection amplitudes of the calculated
many-body statistical operator �. Implemented as a repeated
selection+diagonalization �analogous to MCCI30,31� this de-
fines a self-consistent optimization scheme for �.
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